

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # API Concepts

This directory is for conceptual proposals for APIs. Typically this means code that does not yet work, but is demonstrating a desired interface for discussion or proposed implementation.

This is in contrast to use case-driven notebooks, which generally are organized around a science goal rather than to demonstrate a particular API. For those see other notebook locations.

 # Development Procedure for JDAT Notebooks

This document is a description of the JWST Data Analysis Tools Approach to
“Notebook-Driven Development”. The procedures here outline the process for
getting a notebook through successive development stages to become something
that can be “live” on the spacetelescope notebooks repository.

These notebooks can have many varied science cases, but follow a relatively
standard workflow:

	Notebook Concept

	Notebook Draft

	Notebook-driven development

	Integrated Notebook

	Final/Public Notebook

	Revision based on Community feedback

These stages and the process for moving from one to the other are described below.

The procedure to submit the notebook via a Pull Request is described at the end of this document.
This is repeated for each of the 5 stages.

Note that there is much more information on writing Jupyter notebooks at the
[STScI notebook style guide](https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md),
and similar guidance for Python code at the
[STScI Python style guide](https://github.com/spacetelescope/style-guides/blob/master/guides/python.md).
These guidelines are in place to make review steps easier.

Notebook Concept

The primary purpose of this stage is to record a scientific workflow, but without including actual code.
This stage is generally done primarily by a scientist. Reasonably often, notebooks can skip this stage
if they are simpler or if the underlying tools are already well-enough developed to be immediately implemented.

To begin a notebook at this stage, the notebook author should start with either the notebook template
from the [notebook style guide](https://github.com/spacetelescope/style-guides/blob/master/guides/jupyter-notebooks.md)
or a blank Jupyter notebook. They then write out their workflow in words. Where possible, they put
example code of the sort they would like to see, even if it is not implemented yet.
For example, an author might write this in such a notebook:
```
In [ ]: spectral_line = find_line(jwst_miri_spectrum)

spectral_line should be a list of line centers and names of lines indexed by spaxel,
found using a derivative-based line-finder.
`
even if the ``find_line function doesn’t yet exist anywhere.

The top-level header of the notebook (i.e., the title) should have “Concept: ” at the start
to make it clear this is a concept notebook.  The filename should not have concept in it,
however, as the filename will generally remain the same throughout the later stages.

Once they have the concept ready, the author should create a pull request with the concept notebook’s content (see
instructions at the end of this document).

## Notebook Draft

The primary purpose of this stage is to get a functioning notebook to record a workflow.
This stage is also typically done by a scientist (although with developers available to ask questions).
It is also frequently the first step of development.  That is, if the workflow is already reasonable
to implement with existing tools, the concept notebook is not necessary.

In this stage the notebook should actually execute from beginning to end, but it is fine to be
“rough around the edges”.  E.g., the notebook might have several cells that say things like:
```
…
In []: spec = Spectrum(np.linspace(a, b, 1000)*u.angstrom, some_complex_function(…))

Creating the spectrum above is a bit complicated, and it would improve the workflow if there was a single
simple function that just did spec = simulate_jwst_spectrum(a, b)
```
thereby providing guidance for where specific development would simplify the workflow.

If a notebook is freshly created in this form, the author can follow the “Procedure to submit a notebook as a Pull Request”
(found at the end of this document), skipping the Notebook Concept step.

If the notebook was already created in the Concept Notebook step and the “Procedure to submit a notebook as a Pull Request”
has already been followed, the author should just create a new branch to modify the existing code and then create
a new Pull Request with the changes once they are ready.

In either case, the title (but not filename) of the notebook should begin with “Draft:” to indicate the
notebook is in the draft stage.

Once the Pull Request has been created, the notebook will automatically be built in the repository
so that reviewers can view it.  Reviewers can then comment on the notebook in Github.  At the draft stage
the bar is still relatively low for review - primarily things like ensuring the notebook does run from
beginning-to-end and that data files or the like were not accidentally committed to the repository.

Finally, there are three important technicalities for notebooks that become relevant at this stage
(and continue for future stages):

1. The output cells of a notebook should always be cleared before a git commit is made.
Notebook outputs can sometimes be quite large (in the megabytes for plots or the like), and git is intended
for source code, not data. Clearing the outputs also ensures the notebook can be run from beginning to end and
therefore be reproduced by others.
2. Any data files required for a notebook need to be accessible by others who may be reviewing or testing the notebook.
The [STScI guidelines on data storage for notebooks](https://github.com/spacetelescope/style-guides/blob/master/guides/where-to-put-your-data.md)
should be followed here.  The specific addition for the JWST Notebooks is that notebook data should be
in the DMD_Managed_Data/JWST/jwst-data_analysis_tools Box folder (or subfolders thereof).
If you do not have access to this box folder already, ask a Project Scientist and they should be able to get you added.
Note that if a draft notebook is using data that should not yet be public, the easiest choice is probably central store,
but in that case it is critical that the notebook state prominently that it must be run inside the STScI network.
3. A notebook should state clearly what version of various dependencies were used to generate the notebook.
These versions should be placed in a requirements file in the same directory as the notebook itself. An example of this file
is in the``example_notebook`` folder.
That will ensure reviewers/testers can be sure that if they encounter problems, it is not due to software version mis-matches.

## Concept/Draft notebook-driven development

Between the concept and draft, or draft and polished stages, there is potential for considerable development
to be necessary.  A draft notebook may contain a large number of areas where more development is desired in data
analysis tools, or it may only require a few minor adjustments (or none at all!).  This stage is therefore the most
flexible and dependent on developer resources, etc.  In general the intent is for developers to be able to re-use
bits of code from the notebook as tests for development, while occasionally (if necessary) asking the notebook
author for guidance to ensure the implementation actually meets the notebook’s needs.  There is not a formal
process for this step, but it is intended that the JDAT planning process (currently on JIRA) keeps track of specific
steps needed before a given notebook can proceed on to the next stage.

## Integrated Notebook

Once a draft notebook has been completed, the next stage is to build the draft into a notebook that uses the DAT’s
or associated community-developed software as consistently as possible.  This is typically done via a developer
reviewing a draft notebook and working with the scientist to use DAT software where relevant, or developing
additional DAT code when necessary (see the above section).  It is at the discretion of the notebook author
and developer together which of them actually modifies the notebook and sources the Pull Request, but it is
likely both will be involved to some degree. The default approach is for the developer to take the draft notebook,
mark it up with comments like (using the example from above):
```

…
In []: spec = Spectrum(np.linspace(a, b, 1000)*u.angstrom, some_complex_function(…))

Creating the spectrum above is a bit complicated, and it would improve the workflow if there was a single simple function that just did spec = simulate_jwst_spectrum(a, b)

EJT: This has now been implemented as JWSTSimulator.make_spectrum(a, b, anotherparameterthatturnsouttobeimportant). Can you try that and ensure it works here?
```
and then create a git commit with these comments.  The original author would then address the comments in a
follow-on commit, with implementation of all comments then being the step that allows both to declare the notebook
ready to be called “Integrated”.

Once the notebook authors (original author and developer/reviewer) have agreed it is ready, one of them follows
the Pull Request workflow as described above, but with the notebook title now changed to be just the title itself
(no “Concept:” or “Draft:”). The Pull Request is then reviewed by one of the project scientists, and merged when
everyone is satisfied with the notebook.

## Final/Public Notebook

The final stage for the notebook is release on the
[official STScI notebook repository](https://github.com/spacetelescope/notebooks).
Specific documentation for this last stage is given in the repository itself.  However, that repository and the
working repository here have very similar structure, so it is in principle simply a matter of copying the Integrated
Notebook over to a form of the release repository and doing one final Pull Request.  Note, however, that other
STScI reviewers may comment on this stage.  It is also important for the authors to do an additional check over
the notebook to ensure that it uses released (not developer) versions of requirements where possible. It is also
a good opportunity to fill in the scientific context of a given notebook - e.g. add a motivation section, or a final
plot at the bottom that shows the final science result.  Once this is done, and the Pull Request merged, the Notebook
can be declared complete.

## Revision based on Community feedback

Of course, science does not stand still!  As time passes some of the completed notebooks may have enhancements
or changes necessary.  In general these follow the standard Pull Request workflow and can be submitted by anyone
once the notebook is public (both in and out of STScI).  While the repo maintainers manage this process, the notebook
authors may be called in from time to time to provide opinions or perspectives on any proposed changes.

# Procedure to submit a notebook as a Pull Request

Submission of a new notebook follows the Github Pull Request workflow.  All details are in the
[STScI git workflow style guide](https://github.com/spacetelescope/style-guides/blob/master/guides/git-workflow.md).
Here we give a “cookbook” procedure,
but do not hesitate to reach out for help from other members of the team if you are stuck or are not sure how
it is supposed to work!

Note also that these steps are slightly different for if you update a notebook after you’ve created the first pull request - you can skip steps 1-3 and 5.

1. Go to the github working space https://github.com/spacetelescope/dat_pyinthesky and fork the repository to your user account
(button “Fork” in the top right corner).


	Clone the repository locally on your machine




git clone git@github.com:username/dat_pyinthesky.git


	While this sets up origin to point to your fork, there is currently no connection to the main spacetelescope “upstream” repository.  So you can point your local clone to the right repository by doing:




git remote add upstream https://github.com/spacetelescope/dat_pyinthesky.git


	Create a new branch where to start the development and move to that branch




git branch new_notebook_branch_name

git checkout new_notebook_branch_name


	Create a new folder where to develop the notebook




cd jdat_notebook

mkdir new_notebook_name


	Now start building your notebook (new_notebook_name.ipynb)!


	At any point in the development, save your work and push it up to your forked repository. (Important: you must clear the outputs on your notebook using the Jupyter interface before doing an add/commit like this.)




git add new_notebook_name.ipynb

git commit -m "Clear message to state the fix or improvement to the notebook"

git push origin new_notebook_branch_name

(sometimes you have to reset the upstream, so in that case it is git push --set-upstream origin new_notebook_branch_name)

8. When you are happy with your notebook, double check that you have satisfied the thecnical requirements of the specific status
of your notebook (see above).

9. Now you can create a Pull Request from the spacetelescope/dat_pyinthesky repository. You do that
by clicking on New pull request on the webpage, then the link compare across forks. Then set the base repository
to spacetelescope/dat_pyinthesky and branch master and the head fork to
the branch on your personal fork, so repository username/dat_pyinthesky and branch new_notebook_branch_name. You
set a title and you click on Create pull request.

One of the team members can then merge your Pull Request.



            

          

      

      

    

  

    
      
          
            
  This directory stores several notebooks related to the idea of “Jupyter as a platform”.  That is: how to make jupyter notebooks like like 1) jupyter notebooks, 2) desktop apps, 3) HTML pages, and 4) python scripts

Some dependencies that are specifically related:


	https://github.com/mwouts/jupytext


	https://github.com/QuantStack/voila






            

          

      

      

    

  

    
      
          
            
  
cubelab_notebook

[image: Latest PyPI version]
 [https://pypi.python.org/pypi/cubelab_notebook][image: Latest Travis CI build status]
 [https://travis-ci.org/nmearl/cubelab-notebook]This example package attempts to mimick the structure of a desktop-based Qt
application by creating individual widget elements and exposing events as one
might expect in a desktop framework.


Usage

Once installed launch a Jupyter Notebook (not Lab) environment. The included
notebook demonstrates importing the Application class and instantiating
it to render the ipywidgets collection.




Installation

To use, install the package into your current environment via

$ pip install .






Requirements


	Numpy


	Jupyter


	Plotly









Authors

cubelab_notebook was written by Nicholas Earl.







            

          

      

      

    

  

    
      
          
            
  # JWST Notebook Viz Tools

## Hack Day

Feb 18, RW333 9a-5p:
`
9 - 930: breakfast (provided)
930 - 945: kickoff
945 - 1230: hack
1230 - 130: lunch (provided)
130 - 430: hack
430 - 5: wrap-up
`

### Goal

To produce Jupyter notebooks for JWST-relevant science use cases, to clarify which (if any) visualization tools are needed.

Pre-defined JWST Use Cases: https://outerspace.stsci.edu/pages/viewpage.action?spaceKey=JWSTDATF&title=Data+Analysis+Tools+Use+Cases

### Building notebooks

For the hack day, feel free to to fast development of notebooks on Box or similar if that’s easier to share with team members.  But by the end of the day the notebooks should be at least in Pull Request form into this repo, inside a sub directory inside this directory (see the example).

There is an in-progress example notebook in this repo to show a simple example of the goal for these notebooks.  But bear in mind this is a guideline, and other notebook formats/layouts are still be useful as long as they help with the goal.

### Existing tools for building interactive notebooks

These tools may be useful for the hack day to develop experimental UIs for notebooks.


	Ipywidgets: https://ipywidgets.readthedocs.io/en/stable/ - Basic UI elements like buttons, sliders, etc.


	Glue-jupyter / Glupyter: https://github.com/glue-viz/glue-jupyter - a ipywidgets-based tool for doing data analysis/plotting across multiple datasets in the notebook.


	Astrowidgets: https://astrowidgets.readthedocs.io/en/latest/ - An alpha-level effort to develop astro-specific notebook tools using ipywidgets.  Currently the main functionality is a wrapper around the ginga notebook - essentially a basic “ds9 in the notebook”.


	Ginga in “notebook mode”: https://gist.github.com/ejeschke/6067409 - ginga is not just in the notebook, but it can be used as a “ds9 in the notebook”.  Astrowidgets uses this as a backend so it might be easier to use that, depending on your needs.


	JupyterLab: https://github.com/jupyterlab/jupyterlab - a way to access notebooks that provides a multi-window interface.  E.g., you can “pop out” a view of one of the above tools and have it appear on the sidebar as a separate window.




Additionally, http://pyviz.org/ provides a useful list of Python visualization tools, many of which work well in notebooks.

### Potential tools needing development

The below are areas where STScI might develop tools that might make notebook interactions easier for JWST data.  Knowing which would help with your use cases would be extremely valuable!


	jwst_tools : High-level “helper” functions specifically aimed at accessing JWST data.  E.g. spectrum = jwst_tools.get_my_data(proposalid)


	notebook image viewer : “ds9 in the notebook”


	1D spectrum viewer : “specviz in the notebook”


	2D spectrum viewer : a combination of the above two that are linked together


	IFU viewer: “cubeviz in the notebook”


	Pipeline runner : an interactive tool to auto-run the pipeline stages in exactly the way


	Ramp viewer : A tool to make it easier to look at ramp files in parallel with the image viewer


	Mosaic viewer: “Google maps for astronomical images”  - i.e., only show subsets of very large images that don’t fit in the image viewer


	Glupyter: Additional features for the “linked data” element of Glue-jupyter




### Tips for development


	When building interactive tools in the notebook, start by writing the code for the tool in the notebook.  Then move it to a stand-alone <whatever>.py file when it’s working.  That way when first experimenting you don’t need to struggle with making sure you always importlib.reload.






            

          

      

      

    

  

    
      
          
            
  
VizApp

This is a framework for 1D, 2D and 3D visualization.





            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_images/cubelab-notebook.png





_static/minus.png





_static/plus.png





_static/file.png





